Deploying Policy Exercises and the C-ROADS Simulation to Facilitate and Support Long-Term Climate Policy Development

Elizabeth Sawin for
The Climate Action Initiative
The Heinz Center
Sustainability Institute
Ventana Systems
MIT
Active Philanthropy
Executive Learning Partners
European Environment Agency

11 March 2009
Long-term climate goals

How close do policy choices get us toward climate goals?

350 – 450 ppm
2 °C
Emission peaking in 2015

How close?

Emissions reduction proposals under consideration

Challenges:
• Adding up diverse proposals
• Dynamics of accumulation feedback, and delay
C-ROADS

Specific country emissions
(3, 7, or 15 blocs)
Total fossil fuel CO₂ emissions
CO₂ net emissions from forests
Forests
Afforestation
Deforestation

Carbon cycle
GHGs in atm
Climate Temp
Sea Level rise

Other GHGs
• **Education**
 - Mock negotiations
 - Online-version

• **Decision Support**
 - Policy makers and other non-experts
 - Business leaders
 - Climate communicators
• **Fast**
 - Simulates 500 years in <1 second

• **Accessible**
 - Used easily on a laptop by non-modelers
 - Flexible, intuitive interface

• **Transparent**
 - Open-box; all assumptions easily examined
 - Causal tracing permits auditing of behavior

• **Grounded in and consistent with accepted climate science**
 - Calibrated to and tested against AR4, other models and data
• Dr. Robert Watson, Chair, Department for Environment, Food and Rural Affairs (DEFRA)

• Dr. Eric Beinhocker, McKinsey Global Institute

• Dr. Bert de Vries, Netherlands Environmental Assessment Agency

• Dr. Klaus Hasselmann, Max-Planck Institut für Meteorologie

• Dr. David Lane, London School of Economics & Political Science

• Dr. Jørgen Randers, Norwegian School of Management BI

• Dr. Stephen Schneider, Stanford University
Carbon Cycle Projections vs. MAGICC
Temperature Projections vs. AR4 Ensemble

MULTI-MODEL AVERAGES AND ASSESSED RANGES FOR SURFACE WARMING

IPCC AR4 Fig. SPM.5
What Might We Expect From “Current Proposals”

Global CO₂ Emissions

Billion tons C/yr

2000 2020 2040 2060 2080 2100

BAU

?
SI’s simplified estimates of “current proposals”

<table>
<thead>
<tr>
<th>Region</th>
<th>Proposal Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Eliminate deforestation by 2050</td>
</tr>
<tr>
<td>Canada</td>
<td>70% below 2006 by 2050</td>
</tr>
<tr>
<td>China</td>
<td>80% below 1990 levels by 2050</td>
</tr>
<tr>
<td>Europe</td>
<td>80% below 1990 levels by 2050</td>
</tr>
<tr>
<td>India</td>
<td>BAU rate until 2035 and then constant emissions</td>
</tr>
<tr>
<td>Middle East</td>
<td>Mexico 50% below 2002 levels by 2050</td>
</tr>
<tr>
<td>OECD Pacific</td>
<td>60% below 2000 by 2050</td>
</tr>
<tr>
<td>Other Africa</td>
<td></td>
</tr>
<tr>
<td>Other Large Asia</td>
<td></td>
</tr>
<tr>
<td>Other Latin Am.</td>
<td></td>
</tr>
<tr>
<td>Other Small Asia</td>
<td></td>
</tr>
<tr>
<td>Russia/FSU</td>
<td>1990 levels by 2012</td>
</tr>
<tr>
<td>South Africa</td>
<td>BAU until 2022; emissions constant until 2032, then 1% per year annual decline</td>
</tr>
<tr>
<td>US</td>
<td>80% below 1990 by 2050</td>
</tr>
</tbody>
</table>
How Big Is The Gap?

BAU – A1FI

Global CO₂ Emissions

Billion tons C/yr

2000 2020 2040 2060 2080 2100

BAU

?
How Big Is The Gap?

CO2 Fossil Fuel Emissions

Global CO₂ Emissions

Billion tons C/yr

2000 2020 2040 2060 2080 2100

BAU

Current Proposals
How Big Is The Gap?

Atmospheric CO$_2$ levels

CO$_2$ in the Atmosphere

ppm

2000 2020 2040 2060 2080 2100

BAU
How Big Is The Gap?

Temperature Increase

Temperature Change Over Pre-industrial

Degrees C

- BAU
- Current Proposals

2000 2050 2100
Long-term climate goals

How close do policy choices get us toward climate goals?

350 – 450 ppm
2 °C
Emission peaking in 2015

How close?

Emissions reduction proposals under consideration
Under current proposals emissions would exceed removals.

![Graph showing emissions and removals over time.](image)
How Big Is The Gap?

- CO2 Fossil Fuel Emissions

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU</th>
<th>Current</th>
<th>Proposed</th>
<th>WEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>2020</td>
<td>35</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>2040</td>
<td>40</td>
<td>35</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>2060</td>
<td>45</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2080</td>
<td>50</td>
<td>45</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>2100</td>
<td>55</td>
<td>50</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

80% Global Leveling of CO2 emissions 29% below 2009 levels by 2040, starting now.
How Big Is The Gap?

Atmospheric CO$_2$ levels

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU</th>
<th>Current Proposals</th>
<th>WEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How Big Is The Gap?

Temperature Increase

Temperature Change Over Pre-industrial

Degrees C

BAU

Current Proposals

WEO

80% Global

2000 2050 2100
• We’re not on track to achieve well recognized climate goals, but we could be.

• Getting on track will require many kinds of change,
 – in mobilization, in politics, in global co-operation, in technological innovation and, most of all, in how we think about ourselves and this moment in time
Implications

Through the Climate Action Initiative we are using C-ROADS and other approaches to help spark these understandings in places of leadership and influence:

- Heads of state and their advisors
- Business leaders
- Those helping mobilize and educate civil society
- Media
- Scientists and modelers
Contact

— bethsawin@sustainer.org
— apjones@sustainer.org

— www.climateinteractive.org
It is difficult for decision makers to

• a) aggregate diverse emissions reductions proposals into a single global emissions projection and

• b) mentally simulate from that emissions projection the resulting atmospheric CO$_2$ level or temperature increase
Tools are needed to help decision makers assess whether policy options are sufficient to achieve goals for stabilizing CO$_2$ levels and limiting global temperature increase to within a safe range.
Our analysis suggests that the sum of current, publicly available emissions reductions proposals are likely to be insufficient to achieve widely accepted goals such as stabilizing atmospheric CO$_2$ levels between 350 and 450 ppm or limiting temperature increase to less than 2°C.
Conclusions

A set of proposals that together add up to a global reduction of around 80% of 1990 emissions by 2050 combined with concerted reductions in deforestation would be in the range to achieve this essential goal.
C-ROADS lacks Key Positive Feedbacks

- Specific country emissions
- Full fossil fuel CO$_2$ emissions
- CO$_2$ net emissions from forests
- Other GHGs
 - GHGs in atm
- Climate
 - Temperature
 - Sea level rise

Afforestation
Deforestation

(3, 7, or 15 blocs)
Eliminate deforestation by 2050 (12% of global total)

70% below 2006 by 2050

80% below 1990 levels by 2050

Interpretation (and simplification) of GHG emissions reduction proposals in the public domain, by Sustainability Institute, as of 1 March 2009
Interpretation (and simplification) of GHG emissions reduction proposals in the public domain, by Sustainability Institute, as of 1 March 2009

- India: BAU rate until 2035 and then constant emissions
- Middle East
- Mexico
- OECD Pacific
- Other Africa
- Other Large Asia

50% below 2002 levels by 2050

60% below 2000 by 2050

1 billion tons C/yr
Other Latin Am.

Other Small Asia

Russia/E. Europe

South Africa

US

1990 levels by 2012

BAU until 2022; emissions constant until 2032, then 1% per year annual decline

80% below 1990 by 2050

1 billion tons C/yr

Interpretation (and simplification) of GHG emissions reduction proposals in the public domain, by Sustainability Institute, as of 1 March 2009